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ABSTRACT

Key distributed coordination and control technologies needed for future deployable
autonomous distributed systems were investigated. Specific tasks accomplished include: 1)
identification and exploration of alternative distributed intelligent system architectures, methods
for distributed data fusion, control, and coordination, and strategies that will increase the ability
of the field to survive attacks, failures, and accidents, 2) development of new intelligent software
agents that facilitate distributed coordination and control, and 3) creation of computer
simulations for developing and testing alternative algorithms, considering tradeoffs, and
evaluating the ability of the distributed system to achieve its goals when presented with a set of
operational challenges. This approach allowed design alternatives to be explored, allowed trade-
offs to be exposed, provided insight into the parameters that influence overall system
performance, and facilitated the identification of requirements for further development.
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I. INTRODUCTION

General Objectives and Specific Aims

The Navy/DoD is moving towards deployment and operation of large-scale networks of
autonomous and semi-autonomous sensors, platforms, and weapons that will improve the
nation's ability to face a variety of threats. The Office of Naval Research (ONR) established the
Deployable Autonomous Distributed System (DADS) program to demonstrate the feasibility of
an advanced tactical/surveillance system that operates as an autonomous field of underwater
distributed sensor nodes using a cooperative field level detection and data fusion system. The
present DADS concept utilizes centralized data fusion, target tracking, target classification, and
control functions under control of a master node. The organization of future DADS (called
Micro-DADS) will use a new architecture of distributed clusters of sensors to allow for improved
performance. Since the master node is eliminated in the new architecture, the system functions
are required to be distributed among the clusters in Micro-DADS, allowing for increased
autonomy in some modes of operation. The increased autonomy of Micro-DADS will make it
possible to employ new methods to reduce vulnerability to detection and destruction by the
enemy, but presents additional challenges including detecting, tracking, and classifying targets in
a distributed environment, coordination of autonomous clusters and prolonging the lifetime of
the battery-powered sensor field. The general objective of this research was to investigate key
distributed coordination and control technologies needed for Micro-DADS. The specific tasks
accomplished during the course of the research include:

1) Identification and exploration of alternative

a) Organizational and computational hierarchies for a distributed intelligent system
architecture that support the ability of the system to achieve directed goals by performing
complex tasks in a distributed environment.

b) Methods for distributed data fusion, control, and coordination to allow the system to
operate in modes ranging from those requiring a high degree of cluster autonomy to
modes requiring high bandwidth communication and coherent processing.

c) Strategies to allow the sensor field to survive attacks, failures, and accidents.

2) Development of new intelligent software agents to facilitate the exchange of information,
distribution of the data fusion, control, and coordination functions, support achieving
survivability, and provide a high degree of autonomy when needed.

3) Development of computer simulations for evaluation of algorithms and alternative
approaches identified in tasks one and two above. Simulations were used to develop and test
alternatives, consider tradeoffs, and evaluate the ability of the system to achieve its goals
when presented with a set of operational challenges. The use of visualization and virtual
reality environments were explored as tools to understand, interpret, evaluate, and compare
tradeoffs and efficiency for the complex Micro-DADS.



The Present DADS Concept

The present DADS concept (Fig. 1) is a networked sensor system that includes a field of
underwater sensor nodes that communicate via telesonar [1-4]. The DADS is capable of
operating in shallow-water environments such as a harbor, beach, or chokepoint. Small sensor
nodes sit on the ocean floor and may contain acoustic sensors, electric field sensors, and vector
magnetometers. Data is collected, processed, and locally fused in the sensor node, which then
forwards information about target detections to a master node. The master node fuses the sensor
outputs and controls the field power usage to maximize system lifetime. The master node sends
its data acoustically to a gateway node, which communicates with the external command center
via RF communications. The nodes run on battery energy and communicate with each other
using underwater acoustic modems, in many circumstances relaying messages and data from
node to node. At each node, power is consumed by the processing associated with target
detections and by the communications used to transmit and relay detections acoustically.
Weapon nodes could be integrated into the field if an intelligent minefield is the ultimate
objective.

(from http://www.onr.navy.mil/sci_tech/ocean/321_sensing/info_deploy.htm

not available March 2007.)

Fig. 1. Conceptual DADS field description. The target to be tracked is the red submarine located
at the right of the figure just outside the mouth of the bay (if the figure appears in black and
white, the submarine is dark gray).



The development of the DADS concept has presented many unique challenges and
opportunities for research and technology development. Technical challenges to be overcome in
order to maximize the performance and life of a DADS include energy limitations (battery-
powered nodes), difficulties in achieving near real-time signal and fusion processing imposed by
the limited computational capabilities of node microprocessors, variability of the environment
affecting the consistency of sensor data required to support state estimation by the fusion engine,
large gaps between track segments due to the configuration and density of the sensor field, the
need to control the reporting of false alarms to reduce waste of resources, the need for an
automated target classification capability, and heterogeneous multisensor detections that make it
difficult to correlate tracks and sensor attributes.

The master node carries out central coordination of the major data fusion, control, and
communications functions. The following brief review of the sensing and target detection, data
fusion, and control functions in the present centralized DADS provides the background to
understand the research needed to develop the future Micro-DADS.

Sensing and Target Detection

Each sensor node uses a set of acoustic and electromagnetic sensors to provide coverage of a
relatively small area of interest. Intra-node fusion (with cross-cueing between acoustic and
electromagnetic sensors) performed at the sensor nodes significantly reduces the data
transmission from each sensor node and offloads some of the fusion processing at the master
node. Both the acoustic and magnetic sensors must perceive a target at the sensor node to report
a detection. Once one node has detected the target, a second node nearby is cued and another
sensor node must detect the target. Once the second sensor node detects and reports the target, a
field level detection is called and reported out by the master node for field level fusion. This
processing results in the reporting of tracklets that provide high confidence position, course,
speed, and classification attributes. This approach provides strongly correlated sensor reports,
reducing the number of uncorrelated or weakly correlated detections that occur at the sensor
nodes.

Data Fusion for Target Tracking and Classification

Correlation Methods and Strategies. Given the wide variety of deployment areas in which
DADS must operate, it must be robust against many factors, including environmental concerns
and field configurations [1], [2]. Field configurations consist of the spacing between the sensor
nodes in the field and the layout of the sensor field. In a dense field where sensor coverage
overlaps, textbook correlation algorithms can be employed. However, in the sparse DADS field,
overlapping sensor node coverage is minimal or nonexistent, and the lack of data due to long
periods between detection reports becomes a significant issue. The correlation of data and tracks
from nonhomogeneous sensor types reporting different target attributes also requires a careful
application of correlation methods. A Multiple Hypothesis Tracker Correlator (MHTC) that is
robust in correlation and tracking problems performs the field-level data fusion at the DADS
master node. In the MHTC concept, hypotheses are formed based on the association and
correlation of sensor reports. Each hypothesis consists of a different combination of sensor
reports, an association confidence, and a tracking confidence. Correlation processes can be vastly
improved by using in situ environmental information as well as information external to the field.



Target kinematic, target attribute, and environmental measurements are the prime inputs. At the
field level (master node), knowledge about the environment can be exploited to control
processing at the nodes and provide the best opportunities for correlation of sensor detections.
Likewise, information about likely targets in the area can be used to adjust correlation
confidences. The MHTC allows soft decisions to be made until more data are received.
Drawbacks entail the use of more memory due to potentially large combinatorics and the
addition of pruning rules to manage the hypotheses. Given the variability in the lay down and the
spacing of the sensor nodes, and other factors such as target density, a statically tuned MHTC
would not yield the performance needed by the DADS program. For DADS, an adaptation
capability has been added to allow the MHTC to be robust across all possible field
configurations and environments. In a study undertaken to assess the benefits of maintaining
large numbers of hypotheses when operating in a DADS-like environment, a single hypothesis
approach (nearest neighbor tracker) had poor performance for sparse field configurations but a
limited hypothesis tracker (3 hypotheses) exhibited a performance comparable to the full MHTC
[1,2]. Reduced performance in cases where limiting the tracker to three hypotheses prompted the
development of adaptive methods for pruning hypotheses. Fuzzy control has been studied as
means to provide efficient hypothesis management in MHTC [3].

Classification. Automatic target classification is important in DADS. Since there is no
human operator in the autonomous sensor system, there is a need to reduce false alarm reporting
from the field, and there is a need to address the levels of refinement in target classification and
their uncertainties. The primary target classification process takes place in the DADS master
node. The automated classification requires a) databases of sensor attributes and target
characteristics and b) a process to combine the received information to produce a classification
estimate. Several projects have extended methods originally developed for the classification of
subsurface targets based solely on acoustic data for additional targets and data inputs. A fuzzy
conditioned Dempster-Shafer algorithm (FCDS) has been developed to determine the
classification estimate. FCDS is a fully probabilistic theory, consistent with Bayesian theory,
which is appropriate for reasoning with ambiguous and imprecise evidence [2]. FCDS is capable
of incorporating a priori knowledge of targets.

Control for Optimizing Performance and Life

Both the processing of sensor detections and acoustic communication drain a node’s battery.
In order to maximize system performance and lifetime, the master node controls the field power
usage by a) adjusting detector thresholds and b) the routing of acoustic communications. Given
the sensor locations, communication cost between nodes, initial power available at each node,
power consumption of the sensors, processing and communication, the primary DADS control
problem is to adjust sensor thresholds and communication paths between nodes to maximize
field life subject to a constraint of meeting a desired field level probability of detection.

An individual sensor node can detect targets over only a small area of coverage. To reduce
sensor detection “holes” in sparsely spaced fields, the master node controls the field by adjusting
the sensor node thresholds to acquire a target of interest and detect it through the field [4]. The
master node cues the field by directing selected sensors at the nodes which are near the target to
reduce their detection threshold, thereby increasing probability of detection and hence the sensor
area of coverage. Since reducing thresholds also results in an increase in false alarms and



potentially an increase in communications and power drain, reducing all of the sensor node
thresholds would limit the system operation and therefore is not acceptable. At individual sensor
nodes, thresholds are lowered or raised to maintain the desired constant field level probability of
detection, while maximizing the life of the field. Threshold levels are adjusted at the sensor suite
by choosing different operating points on a receiver operating characteristic (ROC) curve to
yield different probabilities of detection and probabilities of false alarm.

Evolutionary programming methods have been applied in DADS to allow the field to be
controlled by the master node to meet a field-level probability constraint (via threshold
adaptation) and to optimize routing of the sensor node message traffic at minimal power cost,
doubling the life of the field [5]. Messages were routed through alternative paths excluding
nodes with low battery reserves if possible; this scheme allowed power to be conserved where
needed in order to keep nodes from being lost due to exhaustion of power reserves. Optimization
was based on a cost function for a detector constructed to represent the estimated power
consumed over a period of time 7 at each node n, n=1, ... N. The cost function model accounted
for communication costs, probabilities of detection and false alarm, node spacing of the field,
and signal processing parameters used at the sensor node.

Future DADS Concept (Micro-DADS)

Future DADS (referred to as Micro-DADS) are expected to be organized in multiple clusters
typically consisting of 6 to 12 sensor nodes plus a cluster node (Fig. 2) [6]. Micro-DADS sensor
nodes may include new sensing technologies in addition to the acoustic, electric field, and
magnetic sensors in current DADS. The cluster node communicates with its sensor nodes and
may perform signal processing and data fusion. The cluster may include decoy nodes and nodes
that may be relocatable. The cluster node is used in routing communications between clusters
and other entities in the field. An RF link or satellite will allow communication with an external
command center that may specify commands, configuration, operating modes, priorities, and
scenario knowledge. Micro-DADS may be armed with internal or external lethal or non-lethal
devices.

Cluster = 6 to 12 sensor | e

1-5Km
nodes plus a cluster node = spacing

- ot
00 - 500 m cluster node

spacing D

~2 lb.
node
[} -

Fig. 2. Conceptual Micro-DADS Field Description (from the Future DADS and USW Concept
Briefing, Office of Naval Research Arlington, VA, May 29, 2001 [6]).



Clustering the sensors, new sensor and packaging technologies and distributed data fusion,
control, and coordination in Micro-DADS are expected to make the network less vulnerable to
detection, dredging, trawling, and such future threats as quiet submarines, autonomous and
unmanned underwater vehicles, and high-speed torpedoes. The autonomy of the distributed
Micro-DADS clusters will offer advantages not realized with the centralized management
scheme employed in the current DADS. Scalability and fault tolerance are key attributes of
increased autonomy that should increase the capability of the system to withstand attack and
reconfigure if sensors or clusters are lost.

The clustering of sensors provides several advantages that may allow the sensor coverage
areas to overlap, avoiding some of the challenges presented by the sparse DADS field. Clustering
the sensors may allow coherent processing concepts and high bandwidth communications to be
employed within a cluster to improve detection, tracking, and classification performance in some
modes of operation. In addition, some clusters may include specialized sensors that may carry
out unique functions. If the sensors within a cluster have significant processing power, then it
may be possible to employ distributed processing methods to increase the available computing
power above that of the cluster node alone.

Local data fusion within a cluster would significantly reduce (or if in some operating modes
there is a high degree of autonomy, perhaps obviate) the transmission of low-level data from
each cluster node and reduce or eliminate the need for data fusion outside the cluster. Fusion
within the cluster may make use of cross-cueing between differing or similar sensor technologies
to provide strongly correlated sensor reports, reducing the number of uncorrelated or weakly
correlated detections that occur in the cluster. Cueing may also be employed within a cluster to
allow individual sensors or groups to track while lowering thresholds of other sensors or shutting
them off completely to save power. As a target moves out of range of a cluster, inter-cluster
cueing may be needed to allow neighboring clusters to continue tracking.

Multiple and perhaps redundant sensors within a cluster node may allow the application of
new methods for conserving power. Power would be saved if sensors could be turned on only
when needed to acquire measurements.

Autonomous Distributed Systems

The autonomy of the distributed Micro-DADS clusters will offer advantages not realized
with the current centralized DADS. An autonomous distributed system (ADS) is a collection of
independent entities that interact with one another to accomplish a given task. The properties of
autonomous action and autonomous interaction enable an ADS to possess properties like on-line
maintainability, reconfigurability, and fault tolerance. In multisensor surveillance systems, the
autonomous action and interaction must address the data fusion problem and the coordination of
the deployed sensors. Data fusion defines the optimal way of combining detections, local tracks,
and attributes received from several sensors before presenting the information. Decentralized
systems offer the potential benefit of parallel processing in data fusion. The coordination
problem addresses the optimization of the local sensor data acquisition and processing
considering low-level local sensor information, the results of the data fusion process, and high-
level information from other sensors or nodes.



The literature on synthesizing decentralized decision-making algorithms and evaluating their
performance is sparse. Since centralized control gathers all of the necessary data from all entities
in the system and utilizes the data to make decisions, there is often a belief that the centralized
decisions may be “globally” optimal and superior to the performance of decentralized systems.
However, the combination of a) latency of the information received from subordinates, b) the
delay in making decisions that results from the significant computational load, and c) the latency
of transmission of the decisions hinder the generation of high-quality decisions with centralized
control, especially as the frequency of arrival of the sensor data increases and the environment
gets larger, dynamic, and more complex. In contrast, while the decentralized paradigm
successfully addresses issues b) and c), the lack of access to the total system state limits the
quality of its decisions. Recent literature includes successful asynchronous, distributed, decision
making algorithm designs, wherein the local decision-making at every site replaces the
centralized decision making to achieve faster response, higher reliability, and greater accuracy of
the decisions [7]. Based on a distributed hybrid control paradigm, MFAD is a mathematical
framework for asynchronous, distributed systems that permits the description of centralized
decision-making algorithms and facilities the synthesis of distributed decision-making
algorithms. MFAD was employed to develop a distributed systems approach for a simulated
military command, control, and communication problem. In a comparative analysis,
decentralized decisions derived while trying to achieve globally optimum behavior were superior
to those of a centralized approach. The quality of decisions made by the decentralized system
was evaluated by comparing the decentralized decisions to decisions that are considered ideal
because they are made utilizing complete knowledge of the total system state, unlike the
decentralized paradigm, and are not subject to the latency inherent in the centralized paradigm.
The decentralized decisions closely tracked the ideal decisions that, though unattainable, provide
a fundamental and absolute basis for comparing the quality of decisions.

New Challenges in Micro-DADS

Although new technologies such as self-contained power, fuel regeneration, and
microelectromechanical sensors may offer significant future improvements in some areas,
Micro-DADS faces many of the same technological limitations as the current DADS. Energy
limitations are expected to continue to have a major impact on field life and performance given
the power consumption of sensing, signal processing and communication activities.
Technological limitations, power considerations, and the need to control the rate of false alarms
make maximizing field life subject to a constraint of meeting desired field level probabilities of
detection and false alarm a major component of the control objective for the new Micro-DADS.
However, the cluster architecture and an emphasis on reducing field vulnerability in Micro-
DADS require new distributed data fusion, control, and coordination approaches that may
drastically change the communications and sensor management. The centralized data fusion,
tracking, target classification, and control performed by the master node in the current DADS
concept must be replaced by new distributed methods appropriate for the new cluster
architecture, advanced features, and new goals of the Micro-DADS. Hence, there are new trade-
offs to be made between the degree of cooperation and information exchange between clusters,
the degree of autonomy, performance, robustness, field life, and vulnerability to detection in the
distributed Micro-DADS architecture.



Interactions with ONR personnel shaped the research and provided a broad background
perspective. Mr. Oliver Allen, Program Officer at the time of the grant award, and Mr. Larry
Green visited Dr. Jannett at UAB on August 4, 2003 for a kick-off meeting at which the grant
activities and plan were reviewed. At that time, in addition to the originally-proposed work that
considered relatively sparse networks of sensors that reported range and bearing, Mr. Allen
requested that the project be adjusted to consider a sensor dust concept employing a large
number of relatively inexpensive and unintelligent sensors, perhaps having limited
communication and detection capabilities such that the sensors are only able to indicate the
presence or absence of a target. Mr. Robert Wingo replaced Mr. Allen as Program Officer in
January 2004. A briefing on the status of the work was given by Dr. Jannett at the Survivable
Undersea Sensors (SUS) Workshop that was organized by Mr. Wingo and held in Arlington, VA
on April 23, 2004.

The rest of this report is organized as follows. Section II describes the organizational and
computational hierarchies selected to provide an intelligent architecture for the distributed
system. Section III outlines strategies that can be employed to improve the survivability of the
distributed sensor field. Section IV describes the algorithms employed for data fusion, control,
and coordination in the distributed sensor network. Section V describes the use of intelligent
agents in implementing the distributed data fusion, control, and coordination algorithms. Section
VI describes the simulation studies used to test and evaluate architectures, survivability
strategies, and algorithms. Section VII presents conclusions. A technical report and three
manuscripts of recently submitted papers offering detailed descriptions of key parts of the
research are given in the Appendix. Papers published by the research group describing details of
the research and results are referenced throughout this report.
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II. ORGANIZATIONAL AND COMPUTATIONAL HIERARCHIES FOR A
DISTRIBUTED INTELLIGENT SYSTEM ARCHITECTURE

In general, centralized management schemes for data fusion and coordination require data
and decisions to be communicated to or from the central entity. Weaknesses of centralized
methods include a high vulnerability to failure and a lack of scalability [7]. If the central entity or
any of its key components fails, the system cannot function. As the system complexity and size
increase, the system becomes limited by the processing and communication capacities of the
central manager.

In decentralized approaches, the decision making process is distributed among several
network nodes. Every entity utilizes its local information and local goals, along with appropriate
coordination information obtained from other entities, to make its decisions autonomously, but
cooperatively, in order to achieve the desired global performance. Compared to the centralized
system, the distributed decision-making system can process information faster and can react
more quickly to dynamic changes in the environment. The distributed system is expected to
exhibit scalability and robustness against catastrophic failure. However, if the advantages of
decentralized realizations are to be attained, resources and functionality must be replicated across
the distributed system at an extra cost. Since each entity computes decisions autonomously, extra
communication, data storage, and computational overheads are incurred in making key system
information, including the global goals, available to each entity. Distributed systems realizations
may require extra hardware resources if their advantages over centralized systems are to be fully
realized. For example, if only one node entity has the ability to communicate with the command
center in a centralized sensor network, then a distributed realization of the sensor network would
require that multiple entities have the ability to communicate with the command center.
Otherwise, the loss of the single entity that communicates with the command center would
render the system useless.

Organizational Hierarchies

At a minimum, intelligence involves sensing the environment, making decisions to achieve a
goal, and controlling action [8]. Intelligent systems generally exhibit a hierarchical organization,
include certain elements, and require an interconnecting system architecture for these elements.
Several factors have been identified that affect the degree of intelligence, including
sophistication of algorithms, quality of information, computational power, the values used to
make decisions to choose among alternatives, and communication capability. In this work, a
distributed intelligent system architecture of organizational and computational hierarchies that is
consistent with characteristics of intelligent systems was employed to support the ability of
Micro-DADS to achieve specified goals by performing complex tasks in a distributed
environment. An organizational framework structures the interactions between individuals and
affords individual entities an abstract view of the task accomplishment activity going on in the
system. An organization imposes roles, expectations, and relationships among entities.
Organizational structures facilitate task decomposition and allocation, resource sharing and
problem solving coherence.

Fig. 2 includes sensor nodes and cluster nodes, but does not show master nodes or the
external command center that receives the data from the sensor network. Other hardware, such as
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the communication link(s) between the network and the external command center, is also not
shown.

The organizational hierarchy employed in this work includes the sensor, cluster, and field
levels, with the external command center located at the highest organizational level. The sensors
are organized into clusters, such that each cluster contains a fraction of the field’s sensors. The
external command center communicates with the field about the status and activities of the field.
The networks considered in this work include a) sensor, cluster, and master nodes, or b) sensor
and cluster nodes. Sensor, cluster, and master nodes map directly into the sensor, cluster, and
field levels, respectively, of the organizational hierarchy. If no master nodes are present in the
system, then the cluster nodes also map into the field level of the organizational hierarchy.

This organizational hierarchy is consistent with the partitioning of spatial and temporal
resolution that characterizes intelligent systems [8]. Low-level data is processed at the sensor
level, with higher organizational levels operating on increasingly more abstract data. Sensor
measurements reflect the status within a small subset of the field, and larger portions of the field
are considered at the cluster and field levels.

Organizational hierarchies may configure groups of sensors in fixed clusters such that the
sensors within a cluster report to a single cluster node. Instead of this fixed clustering approach,
some applications may be better served by a dynamic clustering approach in which the sensors
are organized into the clusters that best facilitate the application [9-12]. For example, in a target
detection application using fixed clustering, if the target straddles two clusters, then the sensors
nearest the target within each cluster would detect, and data from both clusters would need to be
processed in making a detection decision. Performance might be improved with use of a dynamic
clustering approach in which a single cluster is formed to include the all of the detecting sensors.
Fixed clustering was used in this research in order to facilitate the development, demonstration,
and ease of comparison of distributed systems methods, and approaches to improve survivability.
However, the research results may find application in dynamic clustering as well as fixed
clustering.

Computational Hierarchies

Many different algorithms must be executed in order to carry out the various sensor network
functions. The computational hierarchies depend on the specific tasks that must be accomplished
to execute the algorithms. A methodology for the design of intelligent systems that describes an
architecture, design guidelines for computational hierarchies, building blocks, and a prototyping
method was employed in this work [13]. This methodology resulted in a system that exhibits the
characteristics that define intelligent systems, including a hierarchical organization, and the use
of multiresolutional information processing in external information organization, knowledge
representation, and decision-making processes. The following guidelines were used to facilitate
the design of intelligent sensor networks.

e Use task-oriented decomposition to design the computational hierarchy for each
algorithm. The steps are developing a task tree, choosing a thread of tasks spanning the
tree, and adding task threads iteratively.
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e Map the task tree into the organizational hierarchy of nodes, which may be thought of as
intelligence modules.

® Organize the hierarchy around tasks top down and equipment (actuators and sensors)
bottom up.

e Partition spatial and temporal resolution by an order of magnitude between levels in the
hierarchy, with roughly ten decisions or less per level.

e Use 742 subordinate nodes per supervisory node and one supervisory node at a time.

e Distribute sensory processing, world model, behavior generation, and value judgment
functions throughout the system so that they exist in appropriate forms at each node.

In this work, the computational hierarchy maps the tasks needed to execute a given
algorithm into the sensor level functions, cluster level functions, and master level functions
needed to execute the algorithm. Master functions represent field-level functions. The term
‘master’ was inspired by the previous centralized DADS work in which the master node carried
out field-level functions. As described earlier, the networks studied in this work included a)
sensor, cluster, and master nodes, or b) sensor and cluster nodes. Sensor functions were carried
out at the sensor nodes and cluster functions were carried out at the cluster nodes. Master level
functions must be carried out using the nodes that exist in a given physical realization. If master
nodes were included in the network, then master level functions were carried out at master
nodes. If no master nodes were included, then master level functions were carried out at cluster
nodes.

Motivated by the Principle of Increasing Precision with Decreasing Intelligence, a three-
level computational structure which includes an organization level, a task planning level, and a
task execution level was replicated at each of the sensor, cluster, and master levels [14]. The
organization level receives external commands and information, communicates with other nodes,
and performs such operations as planning and high-level decision-making and sends commands
to the task planning level. The task planning level receives the decisions about the set of tasks to
perform in the next sensor management cycle and their priority. The execution level is concerned
with the low-level sensor management, data acquisition and processing.
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ITII. STRATEGIES TO ALLOW THE SENSOR FIELD TO SURVIVE ATTACKS,
FAILURES, AND ACCIDENTS

Survivability addresses the ability of a system to respond to attacks, failures, and accidents
[15]. Survivability depends on four key properties: a) resistance to threats, b) recognition of
threats and the extent of any damage suffered, c) recovery of full and essential services after
damage, and d) adaptation and evolution to reduce effectiveness of future threats. The general
trend in designing distributed systems to give an increasing amount of autonomy to the
individual nodes generally increases survivability [16]. The distributed architecture of Micro-
DADS inherently offers physical dispersion and the capacity for functional distribution that
support the resistance and recovery properties. Highly autonomous operating modes may
facilitate reduced communications that decreases the likelihood of detection by the enemy and
thereby increases the resistance to attack.

The coordination and communication network functions are major determinants of
survivability. These and other Micro-DADS system functions were considered in addressing the
four survivability properties. The major threat considered in this work was the loss of a node due
to depletion of power reserves or node failure. In this work, the network lifetime was assumed to
end with the loss of any sensor node, cluster node, or master node. Although a different
definition of the useful network lifetime may be more appropriate in some network applications,
the definition above serves as a very direct reflection of the major problems that limit network
lifetime: loss of nodes due to node failure and depletion of battery reserves. Threats due to
factors such as communications disrupted by the enemy, interception of communications by the
enemy, or false communications injected by the enemy were not considered.

The primary strategies to increase survivability developed and exploited in this work include
1) incorporating and utilizing redundancy 2) balancing resource utilization among available
reserves, and 3) using local optimization to improve global performance. These strategies
support the four key survivability properties. Incorporating and utilizing redundancy is a strategy
that is appropriate to use when the nominal field layout does not include the active resources
needed to recover full and essential services after damage. In this strategy, redundant nodes
distributed within the field are dormant until they need to be utilized to achieve a higher level of
performance or to replace nodes lost due to failure or depletion of power reserves. In the strategy
of balancing resource utilization among available reserves, functions are switched between node
entities to evenly spread the utilization of computational and communications resources over the
network so that nodes are not lost prematurely due to exhaustion of battery energy. Without
balanced resource utilization, some nodes will die to end the useful lifetime of the network even
though other nodes may have enough battery energy.to allow the network to run significantly
longer. The strategy of using local optimization to improve global performance allows global
performance to be optimized without requiring extensive global information sharing and
centralized decision-making. These three approaches were evaluated using agents and without
using agents as methods for managing the coordination and communication functions to support
the resistance, recognition, recovery, and evolution survivability properties.
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IV. ALGORITHMS FOR DISTRIBUTED DATA FUSION, CONTROL, AND
COORDINATION

For Micro-DADS, significant efforts that require resources far beyond those available for
this work will be required for the full and detailed development of distributed algorithms needed
for sensing and target detection, data fusion, control, coordination and communications functions
that are as sophisticated as those that have been developed for the centralized DADS. The
intelligent systems design methodology described above in the section Computational
Hierarchies allows relatively limited aspects of a problem to be addressed, with possible
expansion to other aspects at a later date. This capability was very important since it allowed us
to assess aggregate system performance by evaluating a number of alternatives for algorithms
without the detailed development of all of the algorithms that would eventually reside in an
entity (sensor node, cluster node or master node). Although the following descriptions of the
major Micro-DADS system functions are presented in some detail, our primary efforts were
focused on the development of the control and coordination functions that are so important in
distributed systems. Thus, instead of developing each of the functions in great detail, the primary
approach used in this work was to model the behavior of candidate algorithms to allow the
assessment of how their performance would influence the system. In situations where a detailed
implementation of an algorithm for a sensing and target detection, data fusion, control or
coordination function was not available, high-level abstract representations of function behavior
were used to facilitate constructing the system-level simulation. This approach provided insight
into the parameters that influence overall system performance, exposed trade-offs, allowed
design alternatives to be explored, and facilitated the identification of requirements.

For Micro-DADS, the primary system functions are sensing and target detection, data fusion
for target tracking and classification, control for optimizing performance and life, and
coordination and communications appropriate for the distributed architecture. These functions
will be carried out by operations within the clusters, and by the clusters cooperating within the
Micro-DADS architecture. The new opportunities and options offered by clustering emphasized
the need to develop appropriate methods for distributed data fusion and coordination as
described in the following.

Sensing and Target Detection

Determining the presence or absence of a target within the sensor field is the detection
problem. Determining the position of the target within the field is the localization problem.
Determining where the target is moving is the tracking problem. Distributed detection,
localization, and tracking were considered in this work. In one approach, many inexpensive
sensors that reported a logic ‘1’ or ‘0’ to report the presence or absence of a target, respectively,
were employed. The a priori knowledge of the positions of the detecting sensors were used to
localize the position of the target and report it in (X, y) coordinates. In another approach, sensors
that reported the target’s range and bearing were used in a target tracking application.

Target Detection Using Binary Sensor Data in Hierarchical Sensor Networks

Sensor networks employing a large number of relatively inexpensive sensors having a
limited detection range and communication capability are an area of significant research interest
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[17], [18]. For a sensor network having a large number of sensors, a fusion center can make a
final decision about a target’s presence with a decision fusion rule that uses the total number of
detections reported by local sensors as a statistic in binary hypothesis testing. However, sensor
limitations may make it difficult to achieve a required probability of detection (PD) and
probability of false alarm (PF) performance unless the number of sensors is very large [17]. In
addition, this centralized approach would suffer from weaknesses including a high vulnerability
to failure and a lack of scalability. As the size of such a centralized system increases, its
performance is limited by the computational and communications capacities of the central entity.

We investigated the benefits offered by multi-tier hierarchical sensor networks that utilize
decentralized fusion for target detection (see appendix). The PD and PF that describe the
detection performance at the different levels of a multi-tier network were derived and calculated.
We devised and demonstrated a strategy in which detection decisions are made through repeated
trials in order to facilitate achievement of a specified average PD and PF performance using
inexpensive sensors that have limited detection and communications capabilities. The multi-tier
network allowed repeated trials to be performed at the different hierarchical levels in order to
obtain the extra degrees of freedom that are needed to achieve the specified average PD and PF
performance. In addition, if the low-level detections are made within a sensor cluster whose
location within the sensor field is known, then the location of the detecting cluster is information
that could aid in target localization.

This work may facilitate a variety of applications for networks that utilize inexpensive
sensors. For example, inexpensive sensors might be arranged to form the outside border of a
sensor network such that a high PD and low PF are achieved within the border area. When a
target is detected at the border, other network functions or application-specific sensors could be
awakened and used as needed to estimate the target’s position, track the target, or classify the
target.

The distributed nature of multi-tier hierarchical sensor networks facilitates decentralized
fusion and performance improvement using repeated trials. Decentralized fusion reduces the
communication resource demand at areas within the network that are near the central entity.
However, the use of repeated trials requires increased sensing and local communications. Future
work could consider optimizing performance and resource utilization by the choices of
parameters such as the type and the number of common sensors, the number of sensors at each
level, detection thresholds, and the number of hierarchical levels. Another area for future work
is the development of methods that would guarantee that the worst-case performance exceeds a
specified level.

Maximum Likelihood Target Localization Using Binary Sensor Data

Target localization for estimation of target position is an important application of wireless
sensor networks (WSNs). Position estimates obtained using localization can also be used in
tracking applications. One promising approach for target localization is a method using binary
sensor data for which a maximum likelihood (ML) estimator and its Cramer-Rao lower bound
have been derived [19]. In this approach, each sensor makes a binary decision about a target's
presence by comparing the measured signal strength to a threshold, and communicates a one-bit
message to a fusion center. The fusion center uses the binary information received from all the
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sensors, along with a priori information about the positions of the sensors, to localize the target
through nonlinear optimization of a highly complex multimodal function. Recently, this
approach was extended for localization based on quantized data [20]. These methods are
attractive because they facilitate accurate target localization based on the transmission of binary
or multibit quantized data, which requires limited communication bandwidth. The ML estimation
framework for target localization using binary data presented in [19] and reviewed in the
following was utilized in this work.

In the model below, signal intensity is assumed to attenuate as the distance from the target to
a sensor increases

P
a; = ¢ 1
. 1+adi" 1)

where g; is the signal amplitude at the ith sensor, d; is the distance from the target to the ith
sensor, /P, is the signal amplitude at the ith sensor when d; is zero, @ is a constant, and 7 is the

signal energy decay exponent. Sensor parameters used in this work are n =2, =2, and P,= 64.
The distance from the target to the ith sensor is given by
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where (x;, y;) are the coordinates of the ith sensor and the target location is given by (x;, y,). The
signal g; is corrupted by standard Gaussian noise wj; that is independent across sensor i and time
frame j

S; =a;, ta;. 3)

Each sensor makes a binary decision depending on the signal s; satisfying a local sensor
threshold #;; during timeframe j and transmits its decision to a higher-level fusion node where the
decision is used in target localization. After collecting the decisions /;; from all N sensors for all
T timeframes, the fusion center estimates the parameter vector, 8 = [x; y;], by maximizing a log
likelihood function with respect to #[19]. The elements of @represent the target position.

For a target position, € the Cramer Rao Lower Bound (CRLB) for an unbiased ML estimate
of the target position, 6,is given by

El6()-ollu)-of } > 1 @)

where J is the Fisher Information Matrix (FIM) [19]. The covariances of the errors in estimates
of (x;, y,) are bounded by the (1, 1) and (2, 2) elements in the J ' matrix, respectively

var(lé1 )=var(%,)=2J,"
var(6, )=var(3,)2J,,". (5)
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A lower bound on the variance of the target position estimate, D, can be computed as
var( D )=var( él )+var( éz ) (6)

where D:,/x,2+ y, is the Frobenius norm. Thus, the lower bound for the root-mean square

(RMS) error in the overall target position estimate is ,/var( D) . Computing the lower bound for

the RMS error at many target locations across the sensor field aids in assessing the performance
of alternative network configurations.

However, the parameter estimation required by this approach involves optimization of a
complex multimodal function, which is challenging. Deterministic search algorithms are
ineffective because they can converge to local minima, resulting in large localization errors.
Stochastic algorithms provide global solutions, but may yield only approximate solutions, are
computationally burdensome, and can require tuning of parameters. Although the approach
presented in [19]-[20] is attractive and is supported by estimation theory that would facilitate
many further developments, it quickly became clear in this research that applications were not
possible without the development of a suitable estimation algorithm. Several approaches to this
estimation problem were considered in this research [21]-[25]. First, we considered the
continuous adaptive culture model (CACM) as an alternative to stochastic estimation algorithms
such as Genetic Algorithms (GAs). We also studied a new estimation algorithm, the gradient-
based particle swarm optimization (GPSO) algorithm, that combines stochastic and deterministic
schemes to achieve high convergence rates and avoid traps due to local minima experienced in
ML target localization. Next, work turned to parallel PSO algorithms that may be suitable for
complex optimization problems. Finally, we investigated a novel two-step approach that allows
accurate localization of the target without incurring a high computational burden.

The CACM Algorithm. GAs suffer from slow convergence rates, and require the user to
make difficult choices of ranking and scaling schemes and subpopulations that lead to
complexities in implementation. A new computationally inexpensive alternative to GAs, the
Continuous Adaptive Culture Model (CACM) algorithm, was proposed [22]. This new
optimization algorithm was inspired by sociological models of culture dissemination and uses
operators that act directly on vectors of real numbers to avoid the computation associated with
binary encoding and decoding in GAs. The new algorithm does not use global information
sharing, which makes it amenable to parallel implementation since computational bottlenecks
can be avoided. The new optimization algorithm was tested using the De Jong test suite of
optimization problems. Simulations were used to investigate the effects of various parameters on
the performance of the algorithm. For a four-dimensional Rastrigin test function having multiple
local minima, the CACM algorithm converged faster than a GA using 40-bit accuracy per
variable and a single population. The CACM algorithm does not require global information
sharing, thus avoiding computational bottlenecks, and facilitating parallel implementation. The
operators introduced can also be used in GAs to avoid binary encoding.

The GPSO Algorithm. Stochastic global optimization algorithms like GAs, PSO algorithms,
and simulated annealing avoid traps due to local minima. However, since stochastic optimization
schemes perform a random search of the solution space, they suffer from slow convergence rates,
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high computational costs, and poor accuracy of the final solution. Thus, hybrid optimization
schemes that combine both stochastic and deterministic schemes to achieve high convergence
rates and avoid local traps are of interest. The GPSO algorithm combines a PSO algorithm used
for global exploration with a gradient-based scheme used for accurate local exploration [23]. The
PSO algorithm is used to go near the vicinity of a good local minimum and then the gradient-
based local search scheme is used to find the local minimum accurately. Next, this accurately
computed local minimum is used as the global best solution by the PSO algorithm to identify still
better local minima, and the cycle is repeated. Thus, with the GPSO algorithm, the global
minimum is located through a process of finding progressively better local minima. The
phenomenon of failure of ML target position estimation in WSNs due to multimodality of the
likelihood surface was explored. High sensor power levels resulted in complex likelihood
surfaces. Simulation results show that a deterministic algorithm sometimes converged to local
minima, especially when the target was near the edge of the sensor field. The performance of the
deterministic algorithm was compared with that of the GPSO algorithm for ML estimation. The
use of the GPSO algorithm resulted in efficient global optimization and significantly higher
estimation accuracy in a variety of cases. However, the GPSO is a very complex algorithm that
presents a high computational burden.

Parallelization of the PSO algorithm. A parallel implementation was developed for the
coarse-grained parallelization method for the PSO algorithm that was proposed in [21]. In order
to aid in the selection of the parameter values that would allow good performance to be achieved
using the parallel algorithm, an analytical performance model was developed [24]. The model
allows the run-time performance to be predicted for the various parameter options. Results of
preliminary simulations were presented to validate the performance model. Next steps in the
work are to test parallel PSO methods and the performance model in complex optimization
problems.

The Two-Step Approach. In the first step, a coarse estimate is formed by performing a
weighted average ofthe sensor positions that report the presence of the target. The coarse
estimate is then used as the initial estimate for a second step in which a deterministic search is
performed using the Nelder-Mead simplex method. This two-step process essentially reduces the
global search to that requiring a local search near the global minimum, and thus avoids pitfalls
due to convergence to local minima. For an exemplary sensor network, our results showed that
the deterministic direct search often failed by converging to a local minimum if the starting
point was chosen at random. On the other hand, the two-step approach accurately localized the
target with a low computational overhead. Simulation results show that the two-step approach is
a simple method that can be used to localize a target using binary sensor data in an ML scenario
[25] (see appendix). The two-step approach provides an unbiased estimate of the target position,
and allows the ML estimator to achieve localization performance near the CRLB. This approach
may be a step toward facilitating the routine use of the promising ML target localization methods
described in [19] and [20] in which the use of quantized sensor data reduces the needed
communication bandwidth.

Effect of Uncertainty in Sensor Positions on the Accuracy of Target Localization. Most
research on target location estimation using binary decisions assumes that there is no uncertainty
in the positions of the sensors. In reality, many factors may contribute to some measure of sensor
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placement uncertainty, resulting in less than ideal sensor positioning. We studied the accuracy of
target localization achieved using detection decisions made by sensors whose positions were
assumed to be exactly known, even though the detections were actually generated by sensors
having uncertain positions [26]. Computer simulations were used to demonstrate that sensor
position uncertainty, along with noise and coarseness of the sensor grid, degraded the accuracy
of target location estimation. In future work, models could be developed to describe how sensor
position uncertainty degrades the accuracy of estimation of target location.

Data Fusion for Target Tracking

Alternative methods of distributed data fusion for target tracking include the possibility of
either partially or fully distributed MHTC, methods based on Kalman filtering, and multiple-
model schemes. Use of the full complement of sensors and computational power within a cluster
increases the power drain and use of resources. Use of a subset of the available sensors within a
cluster may allow for longer life with reasonable performance tradeoffs. In addition, the potential
benefits of fusing data, tracks, or classifications from multiple clusters needs to be explored and
the trade-offs considered; operating modes that support significant field level fusion of data from
multiple clusters need to be developed and evaluated if they offer higher performance in some
situations. In this work, we have used extended information filtering algorithms as exemplary
algorithms because they are applicable for the wide variety of distributed architectures of interest
and because they accommodate missing data and late communications [27].

Representation of the Tracking Problem

The instantaneous distance of the target from a sensor can be determined by two parameters,
range ( p ), and bearing (6). Let the velocity of the target be V. The velocity can be resolved into
two vectors in x and y directions, V; and V), respectively (Fig. 3). In a similar fashion, the range
p of the target from the sensor can be resolved as p,and p, [27].

Fig. 3. Tracking problem in two-dimensional space.
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If the velocity is assumed constant, the state-space model for the target motion is

px(k)l [1 T 0 0]]p(k-1)
Ve(k)| 10 1 0 0|V (k-1)
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where T is the time interval and w(k ) is the process noise model. The measurement model is
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where v(k) is the measurement noise model. The representation in (7) and (8) was developed

for sensors that report range and bearing. Other representations might be derived for different
measurements, such as the estimates of the (x, y) target position provided by localization using
binary sensor data [19], [20], [25].

Tracking Algorithms

In pilot studies, we have used extended information filtering (EIF) to apply parallel Kalman
filtering algorithms [28]-[31] to the nonlinear tracking problem represented by (7) and (8) above
for the two-tier hierarchical, fully connected and non-fully connected distributed architectures of
interest. These algorithms accommodate missing data and data that arrives late due to
communication delays [27]. These new EIF tracking algorithms serve as exemplary algorithms
for distributed data fusion that operate in scenarios ranging from coherent parallel processing at
high data rates within a sensor cluster to autonomous tracking based on intermittent and delayed
measurements from a single sensor. Hence, the algorithms apply in situations that include
tracking a target based on measurements from distant sites that have a single sensor,
measurements from sensors within a single cluster, and information from several sensor clusters.
The algorithms apply in the following situations:

1) All sensors collocated. This case corresponds to a Micro-DADS cluster tracking a target
based on only the measurements from sensors within the cluster. If each sensor node has
significant computing power and estimates a local track based on its own measurement, then
a parallel EIF structure may be employed to allow the cluster node to produce an optimal
global estimate and error covariance based on only the local estimates and covariances that
are communicated to it by the local sensor nodes. If each sensor node is not capable of
performing the computations needed for local tracking, then standard tracking algorithms
may be employed at the cluster node to process the raw sensor data without the benefit of
parallel computation.

2) All sensors dispersed. This case corresponds to a situation in which multiple clusters each
operate with only a single active sensor. If the measurements at the local sensors are time-
sequential in nature, then a second parallel EIF structure may be utilized to achieve
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parallelism. Since the algorithms accommodate missing data, the requirement that the
measurements be time-sequential is not limiting.

3) Sensors both collocated and dispersed. This case corresponds to generating a global track
based on information from several Micro-DADS clusters. A two-tier hierarchical structure is
employed to achieve parallelism. At the lowest level, the methods of situation 1 above are
used to generate a track estimate for each cluster; a second parallel structure based on the
methods of situation 2 above is employed to fuse the estimates from all clusters to produce a
global estimate.

The situations above cover the two-tier hierarchical, fully connected, and non-fully
connected distributed architectures that represent the spectrum of interconnections relevant for
data fusion in the tracking problem. In a two-tier hierarchical architecture, data from each sensor
within a cluster is fused at the cluster’s local fusion center, and the local fusion results are then
fused at a higher-level global fusion center (Fig. 4). In the fully connected (Fig. 5) and the non-
fully connected (Fig. 6) architectures, nodes generate estimates based upon both their own local
measurements and the measurements from the other nodes to which they are connected.
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Fig. 4. Two-tier hierarchical architecture. Clusters fuse measurements, z, and pass their local
estimates (X, ﬁ) to a fusion center.
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Fig. 5. Decentralized, fully connected architecture. Clusters fuse their measurements, z, and pass
their local estimates ( X ) to all other clusters.
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Fig. 6. Distributed and decentralized, non-fully connected architecture. Clusters pass their local
estimates to neighboring clusters.

These three architectures may be used to represent interactions between sensors in a cluster
or they may represent higher-level interactions between clusters. Any or all of the three
architectures may be utilized at different levels within a sensor field. For example, a fully
connected architecture may represent the interactions of sensors within a cluster, a two-tier
hierarchical architecture may represent the higher-level interactions between clusters within a
group, and a non-fully connected architecture may represent interactions between groups of
clusters.

These exemplary fusion algorithms allowed system performance to be evaluated for
alternative sensing and target detection algorithms, control algorithms, survivability strategies,
and agent paradigms in the face of a wide variety of operational challenges presented to the
distributed system [32]-[36]. The EIF algorithms were applied to the tracking problem
represented by (7) and (8) for sensors that report range and bearing. However, the algorithms
could also be applied to a tracking problem representation developed for measurements that are
the (x, y) target position estimates computed as described in the Maximum Likelihood Target
Localization Using Binary Sensor Data section of this report.

Fuzzy-Reinforcement Learning to Track a Mobile Target using a WSN

Fuzzy logic and reinforcement learning techniques were applied to the problem of predicting
and tracking the position of a mobile target as it travels through a distributed WSN [37]. The
accuracy of the target position prediction, amount of communication between distributed
sensors, and power consumption are all issues that influence the performance, reliability, and
survivability of the sensor field. A reinforcement learning method based on fuzzy logic was
designed to improve the accuracy of an existing target tracking method [38] without adversely
affecting its underlying communication and power consumption. The reinforcement learning
method incorporates a feedback error term that represents the estimated difference between the
actual and projected target positions. This error term continuously adjusts a fuzzy inference
mechanism that has been added to a previously defined tracking approach [37]. The new
approach was compared to the unaugmented tracking approach for a variety of target movement
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scenarios in simulation. Simulation was used to compare Fuzzy reinforcement learning improved
the mean square tracking error (MSE) except in cases where the target maintained a nearly
constant velocity for which fuzzy reinforcement learning and the unaugmented approach both
produced a low MSE.

The fuzzy-reinforcement learning method is an example of an intelligent systems approach
to target tracking. Extending this fuzzy-reinforcement learning method to counter the effects of
sensor noise and sensor placement inaccuracies and the application of Neuro-Fuzzy techniques to
train and optimize the initial fuzzy sets are areas for future research.

Control and Coordination for Optimizing Performance and Life

As described in a previous section of this report, the strategies used to increase survivability
in this work include 1) incorporating and utilizing redundancy 2) balancing resource utilization
among available reserves, and 3) using local optimization to improve global performance. This
section describes several approaches in which these strategies are brought to bear in optimizing
performance and life. Redundancy may be available in the form of underutilized existing
network resources or it may be provided by the placement of extra resources that would not
otherwise be available in the network. These approaches utilize redundancy to support the
resistance, recognition, and recovery properties of the sensor network to increase survivability
and to increase overall performance and life of the field.

Redundant Functionality

If redundant functionality is incorporated in the network, then reconfiguration could make
use of existing resources by moving the function of a dead or dying node to another node having
the capability to execute the function. For example, if the power reserve falls below a threshold
in the node currently handing master node functions such as data fusion and communications
with the outside world, those functions would be relocated to another capable node.

In one approach, the capacity to perform the master level functions in the computational
hierarchy was distributed among several cluster nodes and the coordination function was used to
move the master level functions from one capable cluster node to another to increase the lifetime
of the field [33], [35], [36]. The cluster nodes ran cluster level functions unless they were also
called on to run master level functions. Master level functions running on a cluster node utilize
additional computational and communications resources, and need more power than is required
for the cluster level functions alone. The routing of communications to and from the cluster node
running the master level functions increases power utilization at surrounding sensor nodes. If the
master level functions would always be carried out at a single cluster node, the resulting power
drain would most likely cause this cluster node or one of the nearby sensor nodes to die first due
to battery depletion, ending the useful life of the field at a time when most other nodes would be
likely to have significant power remaining. With the approach of moving master level functions,
the resource utilization was balanced among the cluster nodes so that the field degraded
gracefully and the field lifetime increased.
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Balancing the Ultilization of Communications Resources

An approach for balancing the utilization of communications resources throughout the
network by routing based on power and node availability preserved the availability of the
resources needed to route messages throughout the network. Several schemes were considered
for routing based on power and node availability [39]. Preservation of critical communications
resources would increase the useful lifetime of the field.

Communication requirements both internal and external to the cluster were considered. In
this work, it was assumed that sensors could communicate directly with their cluster nodes.
Communication between clusters was needed in varying degrees to support fusion, tracking,
classification, queuing, switching modes of operation, and information exchange needed to
maintain redundancy. Communications between clusters may also include environmental
information, information about likely targets in the area, as well as additional information
external to the field that can be exploited to control processing at the cluster nodes and provide
the best opportunities for correlation of sensor detections. Since cluster and master nodes were
spread over a wide area, cluster-to-cluster relaying of information was used to transmit
information between master nodes, cluster nodes and the external command center. The node
sending the data communicated with the receiving node through cluster-to-cluster relaying of
information using intermediate sensor nodes. Each node maintained a routing table that
contained information for routing data to a given receiver node.

In the Fixed Multi-Hop Routing (FMR) protocol, the data from the sending node is routed to
the receiving node through intermediate sensor nodes. Each node maintains a routing table that
contains information for routing data to a given receiver node. The Probabilistic Multi-Hop
Routing (PMR) protocol attempts to equalize the routing load uniformly among all the nodes in
the sensor network. In contrast to FMR, where every node has only one next-hop node for
routing data, in PMR one of several possible next-hop nodes is selected randomly by the sending
node at run time. The Modified Probabilistic Multi-Hop Routing (MPMR) protocol is similar to
PMR, except that while calculating the next-hop node from the pool of possible next-hop nodes,
the previous use of nodes (state) is taken into account. In other words, a node’s probability of
selection is reduced if the node was used previously for routing data using MPMR.

For each of the FMR, PMR, and MPMR protocols discussed above, whenever there is a
need to update the routing table due to factors such as low battery energy at the routing nodes,
the resulting communication overhead is aggravated by redundant communications between
nodes. Localized Optimization (LO) is a new scheme developed in this work that attempts to
reduce this overhead. LO exploits the fact that a cluster node a) has access to the information
about battery energy levels at the sensor nodes within the cluster with negligible communication
overhead and b) possesses the required computational power to perform a localized routing
adjustment. In LO, whenever a routing node’s battery energy level falls below a preset threshold,
the cluster node employs a set of rules to choose another node in the cluster to act as a
replacement routing node. This scheme eliminates the need to inform other clusters in the sensor
network of the new routing node, resulting in a substantial decrease in the communications
overhead from that required to update routing tables throughout the network. Since the LO
concept involves only changing the network address and range setting of a given sensor node, the
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scheme requires very little computational and communication overhead. The LO concept was
applied to each of the FMR, PMR, and MPMR routing protocols.

The routing protocols were implemented and tested in simulations using resource-based
modeling. The field lifetime was the time from the start of the simulation until battery energy
power was exhausted at any node. The overall field lifetime was higher with PMR and MPMR
than for FMR. However, since PMR and MPMR select the next routing node randomly, the next
routing node selected may sometimes be the same node that forwarded the data to the current
sending node, resulting in network oscillations. Due to these network oscillations, the time taken
to route data in PMR and MPMR was higher than FMR, resulting in delays in data transmission
that may adversely affect performance in some applications such as target tracking. The use of
LO improved the field life for all of the routing protocols. The improvement in the field life was
due to the effective use of the inherent redundant resources available in the sensor network.
However, LO also introduced delays in data transmission. The use of FMR with LO is the most
promising of the routing protocols considered, since it significantly improved field life at the
expense of only a minor increase in delays, and can be applied locally within a cluster [39].

Balancing the Utilization of Power Resources

The cycling of the power supplied to some sensors based on the need to acquire
measurements for tracking provided a simple means to conserve power. The evolution of the
covariance of the track estimate computed using the EIF algorithm served as a useful means to
determine when to turn on a sensor in order to acquire the measurements needed to maintain a
given tracking accuracy [36].

Pre-Computed Reconfiguration

Evolutionary programming, ant algorithms, and immune algorithms are examples of
emerging biologically inspired approaches that may find application in optimization, distributed
control and eliciting cooperative behaviors. Some of these methods are now being applied for
combinatorial optimization and routing in communications networks. We investigated
evolutionary programming and ant algorithms for message routing using the traveling salesman
problem [40]. Ant algorithms generally outperformed genetic algorithms (GA) in computing
optimal routes, but required more computation.

However, optimal reconfiguration in real time during normal system operation is difficult
and requires significant communications and computations. Therefore, it may not be practical to
run the optimization algorithms needed to perform complex reconfiguration in real time, or at the
time when the network needs reconfiguration. When a scenario requiring reconfiguration is
recognized, the use of a pre-computed reconfiguration solution that fits the recognized scenario
could allow reconfiguration to take place without requiring the real time execution of
computationally intensive optimization algorithms.

We investigated methods for pre-computed reconfiguration that consider the layout of the
deployed sensor field in computing a set of configuration and operating options that are optimal
for given scenario permutations (combinations of factors including loss of clusters, low power
reserve at a cluster, externally supplied operating mode, and disturbed communications) [40]. A
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Genetic Fuzzy Rule Base System (GFRBS) was used to create and optimally tune fuzzy rules
from an initial population of rules. In the five-node problem studied, the resulting rules yielded
the optimal route if one node was lost. If the autonomous entity (node, agent) is able to recognize
a new scenario that requires reconfiguration, the system may be able to apply the pre-computed
rules determined by the offline tuning of the GFRBS to reconfigure itself to an optimal
configuration that is appropriate for the recognized scenario. Potential benefits of pre-computed
optimal configuration include a longer field life due to reduced power consumption, a reduction
in the likelihood of detection by the enemy due to reduced communications during
reconfiguration, a wider array of reconfiguration options than is possible if optimization must be
computed in real time, the use of more powerful optimization algorithms, and a more seamless
transition to a new configuration.

Performance Guided Reconfiguration

The initial network design and layout of a sensor field considers the required network
performance [41]. However, as sensors fail due to battery exhaustion or other reasons,
performance degrades and detection, localization, or tracking coverage holes will develop unless
additional sensor resources maintain the required performance. On the other hand, field
performance requirements may not be constant over all phases of field lifetime. If performance
requirements decrease over some period, unessential sensors could be turned off to conserve
resources. If performance requirements increase, the new performance goal could be met by
awakening redundant sensors as needed. We developed performance-guided reconfiguration
(PGR) to reconfigure the field to enable performance requirements to be met while conserving
resources.

This work considered the application of PGR in a sensor network designed to localize a
target based on binary detection reports from sensors arranged in clusters. A PGR algorithm was
applied to reconfigure a sensor network by awakening dormant redundant sensors as needed to
meet desired performance goals when sensor failures occur [42]-[44]. Redundant sensor nodes
placed in the network were dormant until they replaced a failed sensor. When a sensor fails, PGR
identifies candidates for replacing the failed sensor from the set of available redundant sensors,
and uses a performance-based cost function to select the candidates to be activated [42]. The
PGR algorithm is applied locally within the cluster that has a failed sensor. Some initial
simulation results of localized PGR, in which PGR is applied at the cluster level in a multicluster
sensor network, were described in [44].

In PGR, multiple sets of redundant inactive sensors that could be activated to meet the
performance criterion within the cluster are initially identified as candidates for replacing the
failed sensor. The candidate sensor set that optimizes cluster performance is selected using a cost
function that weighs additional criteria of interest. The cost function provides the basis for
ranking all possible solutions and for adjusting the weights of the individual performance
objectives in terms of the total cost for a candidate set S.

4 N
Cost(S) = Nyc+)_ 1, —r)+nZR—f_
S 9)
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In (9), yand 7 are adjustable constants, Ny is the total number of sensors in candidate set S, c is a
flat cost per sensor, and r is the radius of a no-penalty search area around the dead sensor. The
distance of candidate sensor i from the dead sensor is r;, N; is the total number of sensors from
candidate set S that are in area j, and R; is the number of redundant sensors available in area j
(area refers to one of four sectors formed by dividing the area around the dead sensor bounded
by the search radius  into four parts).

The three terms appearing from left to right in the cost function are referred to as term one,
term two, and term three. The cost function weighs the absolute sensor cost (term one), the
distance of the candidate sensor from the failed sensor (term two), and the cost of utilized
redundant resources (term three). Term two is applied only if the candidate sensor is outside a
no-penalty search area such that ;-r is positive. A no-penalty search area is an area bounded by
the initial search radius. The search radius is increased if sensors in the area bound by the initial
search radius do not meet the performance requirement, and term two is then non-zero.

For a simple demonstration of localized PGR, we compared the performance of a
multicluster network using localized PGR, a nearest-neighbor reconfiguration approach, and an
approach without field reconfiguration [44]. Without PGR, coverage performance degraded as
sensors were lost. With PGR, every time a sensor failed, the respective cluster was reconfigured
to maintain coverage. In this way, clusters made local reconfiguration decisions to achieve the
global field performance goal. A more detailed example of PGR is described in the
SIMULATION section of this report.

Determining whether PGR is needed after loss of a sensor requires the intensive
computation of the CRLB at many potential target locations within the cluster. Also, the process
of determining the candidate sets of sensors that will attain the required performance is
computationally intensive. Developing more efficient methods for computing the CRLB and for
carrying out PGR using pre-computed reconfiguration are topics for future work. Other topics for
future PGR work include the development and simulation of algorithms for turning sensors on
and off as performance requirements change over time, and optimizing the placement of
redundant sensors, especially in the area where clusters overlap.
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V.INTELLIGENT SOFTWARE AGENTS

An agent is an entity that acts in the place of another in order to bring about a desired result.
Agent systems and multi-agent systems are a new and robust paradigm for designing flexible
architectures for systems with disparate needs. Agents are especially suited for environments that
are open and distributed [16]. An agent is characterized by the concepts of situatedness,
autonomy, and flexibility. Multi-agent systems consist of several interacting agents and are
appropriate for cases where data are distributed and incomplete, individual agents have a limited
viewpoint, there is no global control, and computation is asynchronous. Multi-agent systems
provide a level of abstraction that enhances computational efficiency, reliability, extensibility,
maintainability, responsiveness, flexibility, and reuse. With these properties, multi-agent system
technology appears to be an ideal candidate to realize autonomous distributed system designs
and provides a framework that may be useful in achieving survivability [15], [45].

In this work, agents provided intelligence within the system with a goal of increasing the
network field life without adversely affecting performance [34]-[36]. A multi-agent system was
realized by wrapping selected cluster nodes and master nodes with an agent, with all
communication and system actions routed through the agent. Agents supported actions within
nodes and interactions between nodes in many ways. Agents facilitated the distribution of
information, facilitated the distribution of the data fusion, control, and coordination functions,
supported achieving survivability, and provided a high degree of autonomy when needed.

A scheme of ‘functional agents’ was used to allow agents to carry out multiple functions at a
node [35]. Functional agents performing different functions were stacked on the same physical
hardware. As a result, there was an increase in the number of nodes in the system that could
perform the various functions and the hardware requirements were simplified. Thus, stacking
functional agents is a method that uses the abstraction provided by agents as an alternative for
simplifying hardware requirements in sensor networks.

A variety of agent paradigms applicable for resource management was developed and
compared using simulations [34]-[36] (see appendix). Such a comparison provides an increased
understanding of how the performance of the sensor network changes with the number,
functionality, and presence of agents at different levels in the network hierarchy. A modular
simulation framework based on object-oriented design was developed to facilitate the
implementation and comparison of different agent-based scenarios. This framework was used to
generate data for detailed analysis of component interactions and for evaluation of the integrated
system. Results compared the number of computations, number of communications, tracking
performance, and field life for Monte Carlo simulations of scenarios in which different agent
paradigms were employed. These comparisons should assist designers of agent-based systems in
utilizing agents to their best advantages in scenarios similar to the wide range of those explored.

We also developed a measure of the machine intelligence of an agent-based system, the
Machine Intelligence Quotient (MIQ) [34], [36]. The MIQ may make it possible to predict the
performance of agent-based alternatives having different complexity. Such predictions may be
useful in deciding from among the myriad of different agent-based alternatives. In its present
form, the MIQ is quantitative. Refinements to introduce indicators that give a better reflection of
quality are topics for future work.
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Another area for future work is the use of cooperating agents in supporting survivability
through enhancing the network’s ability to adapt and evolve to reduce the effectiveness of future
threats. Agents might recognize the type of attack or accident that caused damage and take steps
to either reconfigure the network or adjust operating modes in order to reduce future
vulnerability to that threat.

Gliders as Agents for Undersea Data Collection

In another research thrust, gliders were considered for data collection in undersea WSN
applications [46]. Undersea data collection is a significant research challenge since it must
accommodate the power and bandwidth constraints of the WSN infrastructure and the specific
needs posed by the application. Autonomously navigating gliders provide a possible solution for
data collection tasks in civilian and military applications. The most important factors in the use
of gliders are navigational speeds, routing, the structure of the WSN hierarchy, and the effect of
oceanic currents. Glider characteristics important for use in data acquisition for target detection
were reviewed. Some exemplary glider routing algorithms were developed and tested in
simulations. Simulations were used to compare the time required for the glider to collect data
from all sensors in each routing scheme, consider the effect of oceanic currents, and illustrate the
behavior of gliders under different network topologies and assumptions. The speed at which
current gliders travel introduces delays in acquiring data from the sensor with longer delays
occurring for more distant sensors.

The literature review raised issues such as the effect of oceanic currents on performance. It
was observed that, irrespective of the direction of glider movement in reference to that of the
currents, the glider must reduce its speed to maintain its course and navigational accuracy.

Routing a glider in single-tier networks requires the glider to visit each sensor in the
network. Hierarchical sensor networks use a cluster paradigm in which the sensor nodes report
their data to their respective cluster nodes. The glider can be made to visit a cluster node in such
hierarchical networks to provide several advantages. Visiting only one cluster node instead of
each sensor node saves the glider significant energy and time in collecting data from the entire
network. The effect of oceanic currents, obstacles, or internal positional error might change the
course of the glider to affect its ability to visit all the sensor nodes on the intended path. In
hierarchical network structures, the glider visits the cluster node located at the center of each
cluster. If the glider loses its bearing, then it might reach any sensor nodes on the periphery of
the cluster and receive the information updates for that entire cluster. Simulations of glider
routing in a two-tier hierarchical structure provided more flexibility, reliability, and speed of data
collection from the sensor nodes than can be achieved in single tier networks.

This work is a step towards developing realistic scenarios and assessing glider performance
under different circumstances that will enhance the application of glider technology for data
acquisition in sensor networks. Future work may include adaptive routing in which the glider
dynamically changes its route as it processes the sensor data. Various assumptions made in
developing the simulations could be eliminated in the future when more accurate data becomes
available e.g. the deployment of the sensors can be assumed to be random instead of symmetric.
The research could be extended to explore and simulate additional applications such as hardware
reconfiguration of sensor networks in which the glider can physically replenish dead sensors.
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VI. SIMULATION

Simulation was used to develop and test alternative Micro-DADS realizations and
algorithms, consider tradeoffs, and evaluate the ability of the distributed system to achieve its
goals when presented with a set of operational challenges. For initial evaluation of each Micro-
DADS alternative, high level and simplified representations of fusion, classification, control,
communications, and other processes were employed. As new alternative algorithms, strategies,
and agents were developed, they were integrated and tested in simulations. The utilization of
battery energy, communication, and computational resources was modeled at each system node
in order to provide the opportunity to study tradeoffs involved in designing power efficient
coordination, communication, and reconfiguration strategies.

Underwater Target Tracking Using Sensors that Report Range and Bearing
Three-Tier Hierarchical Distributed Sensor Network

Initially, a modular system level simulation of a three-tier hierarchical distributed sensor
network was developed for the underwater target tracking application [33]. The three-tier
network shown in Fig. 7 includes sensor nodes (small circles) that report measured range and
bearing of submarine targets to cluster nodes (black dots) that perform local data fusion. The
large circles represent cluster nodes at which the master function may be carried out. At a given
time, one of the cluster nodes carries out the master function (diamond) by gathering the data
from the cluster nodes and performing global data fusion, tracking, and communication with the
outside command center.
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Fig. 7. Three-tier hierarchical sensor network architecture.
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The Node Model

A node model was used to simulate events and resource consumption occurring at each node
(Fig. 8). In the system level simulation, a field layout is initially specified, the target track is
generated, and events are simulated at each time step. First, the target position is related to the
range of each sensor to facilitate measurement of the target position by the sensors. Next, a
communications model runs to transfer information from one node to the other. Next, the node
models are run.

Inbox

¥

Coordination
Module

¥

Sensing or Data
Processing Module

¥

Resource
Utilization Module

2

Outbox

Fig. 8. Operational flowchart of a node model.

The initial Micro-DADS realization utilized a three-level computational structure that
includes an organization level, a task planning level, and a task execution level at each node. A
fuzzy rule-based inference system and other advanced methods were considered for use in task
planning, but offered no benefits for the level of implementation detail used in this research. At
the beginning of each time step, a node’s organization level receives information such as
commands, communication counts, and mode of operation from the communications module
through an inbox. Next, at the node’s task planning level, a coordination module is run to
coordinate events based on the received information. In a sensor node, the coordination module
controls simple functions such as the sleep-awake mode of the sensors. In a cluster or a master
node, the coordination module completes tasks such as synchronizing, organizing, or
reconfiguring the network. Next, at the execution level, a sensor node executes the sensing
module, and a cluster or master node executes data-processing module to run data fusion
algorithms based on distributed EIF filtering [27], [33]-[36].

After execution of the sensor or data processing module that is appropriate for a node, the
resource utilization module executes in order to account for the power used by the
communications and computations occurring during that time step. The following section
presents more detail about the resource utilization module.

The communications model is responsible for representing salient features of the sensor
network communication. A simple outbox-inbox communication scheme transfers the data
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between the nodes. The data is transferred from the transmitting node outbox to the destination
node inbox. At the end of a time step, the node sends information to its outbox for transmission.
The communications model takes the information from outboxes and sends the messages using a
communications protocol and appropriate routing to the appropriate inboxes. Hence, at the
fastest, messages placed in an outbox at simulation instant # will be available in the destination
inbox at simulation instant #+1. However, computations at the routing nodes, network bandwidth,
environmental problems, multihop routing, and queuing at the sensors in the routing path may
introduce delays in the communication of information to the destination. Delays may affect
various aspects of the system performance. For example, communication delays would degrade
the target tracking performance. The communications model introduces communications delays
due to the above factors.

Resource-Based Modeling

Network performance and lifetime depend on the battery energy, communication, and
computational resources available at each system node. The first step in optimizing performance
and lifetime involves analyzing the sensing, data processing, communication, and coordination
modules of a node and modeling their impact on utilization of battery energy, communication,
and computational resources. We developed a resource-based modeling framework for system
level simulation of sensor networks to offer flexibility and fast generation of various operational
network scenarios. This simulation framework provided the opportunity to study tradeoffs
involved in designing coordination, communication, and reconfiguration strategies that preserve
power, communication, and computational resources [33].

The computational and power resources of each node utilized by sensing, data processing,
communications, and coordination events are tabulated. Resources utilized by communications
are tabulated for each node by the communications model, and those utilized by sensing, fusion,
and coordination are tabulated at each node using the resource utilization module (Fig. 8).
Proportionate battery draining weights are assigned to these tabulated events depending upon the
actual practical node model used for the simulation. Based on the assigned weights, the power
dissipated and the remaining battery energy are computed for each node at each time step.

Power utilization drains the battery and affects the node and field life. Different battery
models were evaluated in order to allow power utilization to be computed accurately. A
stochastic model of the battery capturing the essence of the charge recovery mechanism was
implemented to account for the relaxation phenomenon and the rate capacity effect [33].

Coordination schemes were developed in this work with the aim of prolonging the sensor
network lifetime by efficiently utilizing available resources. These schemes allowed
reconfiguration of the sensor network to make more optimal use of available resources and to
take advantage of redundant resources. Simulation results show that reconfiguration of sensor
networks improved performance and lifetime over that of a sensor network having a fixed
configuration.

Object-Oriented Agent Simulation

The initial system level simulation of an underwater distributed sensor network was used as
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the basis for developing an object-oriented framework for simulating agents in a distributed
sensor network [34]-[36]. The framework is not restricted for use in this application, but can be
easily adapted for simulating agent-based sensor networks for other applications. Since the
system under consideration is large, having a large number of entities, different implementation
strategies, and detailed interactions between the different entities, simulations were developed
using a modular approach. Software modules were developed to mimic the entities and processes
that would be present in an actual physical system. The system was partitioned into components
that can be modeled at the lowest behavioral levels. This modular approach gives the flexibility
and extensibility of changing, adding and removing modules for simulating different scenarios
and strategies at a fast pace. This framework utilized the advantages of object-oriented
programming techniques in system design. This framework allows easy scaling of the sensor
network. Nodes can be added or removed, different communication and battery models can be
simulated, and different algorithms can be easily employed within the agents thus facilitating the
simulation of a large number of scenarios in a short time.

Fig. 9 shows the object diagram of the system that includes multiple master, cluster, and
sensor nodes. Agents are present on the master and the cluster nodes. The sensor nodes report
measured range and bearing of target to cluster nodes that perform local data fusion. For a
system that does not include master nodes, some cluster nodes will include a master agent in
addition to the cluster agent.
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Fig. 9. Object diagram of the simulation framework.

For the outbox-inbox communication, a localized optimization scheme was used to route the
data through the network [39]. Localized optimization uses the fact that cluster nodes have
access to information regarding the residual power levels of the cluster’s sensor nodes. This
information is used within the cluster for localized routing reconfiguration.

Operational challenges included commands specifying various operating modes and theater
information received from the command center, a rich set of target tracking and classification
scenarios, undersea environment, field configuration, field topology, loss of clusters and sensors,
loss of communications, computational load, and data transmission latency. Simulation was used
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to provide insight into the parameters that impact overall performance of Micro-DADS, expose
trade-offs, allow design alternatives to be explored, and facilitate the identification of
requirements. In order to develop a quantitative evaluation of the performance of decentralized
alternatives, decisions were compared to those of a hypothetical entity that makes decisions
using a centralized paradigm based on the exact and current knowledge of every state of every
entity in the entire system [7].

Visualization

We explored the use of visualization and virtual reality environments to provide the visual
effects of real scenarios as a tool to understand, interpret, evaluate, and compare tradeoffs and
efficiency. The Enabling Technology Laboratory (ETL) in the UAB Mechanical Engineering
Department collaborated in the visualization work. The ETL has a 128 processor LINUX cluster
and visualization infrastructure. This includes a 9-tile Viz-Wall with 9 associated processors
projecting a very large-scale high resolution image in a synchronized fashion, and a Viz-Box
with high performance processors to perform virtual reality in a th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>